1,703 research outputs found

    Modeling of Nonhydrostatic Dynamics and Hydrology of the Lombok Strait

    Get PDF
    The long-wave dynamics of the Lombok Strait, which is the most important link of the West Indonesian throughflow connecting the Pacific and Indian Ocean waters, was simulated and analyzed. A feature of the strait is its extremely complex relief, on which water transport creates a field of pronounced vertical velocities, which requires consideration of the nonhydrostatic component of pressure. The work presents a 3-D nonhydrostatic model in curvilinear coordinates, which is verified on a test problem. Particular attention is paid to the method of solving the 3-D elliptical solver for a nonhydrostatic problem in boundary-matched coordinates and a vertical σ level. The difference in transport through the Lombok Strait is determined by the difference in atmospheric pressure over the Pacific and Indian Oceans. Based on the results of the global simulation, the role of these factors in terms of their variability is analyzed, and the value of nonhydrostatic pressure in the dynamics of the Lombok Strait is revealed and evaluated. The vertical dynamics of the Lombok Strait are considered in detail based on hydrostatic and nonhydrostatic approaches

    Operational tsunami modelling with TsunAWI – recent developments and applications

    Get PDF
    In this article, the tsunami model TsunAWI (Alfred Wegener Institute) and its application for hindcasts, inundation studies, and the operation of the tsunami scenario repository for the Indonesian tsunami early warning system are presented. TsunAWI was developed in the framework of the German-Indonesian Tsunami Early Warning System (GITEWS) and simulates all stages of a tsunami from the origin and the propagation in the ocean to the arrival at the coast and the inundation on land. It solves the non-linear shallow water equations on an unstructured finite element grid that allows to change the resolution seamlessly between a coarse grid in the deep ocean and a fine representation of coastal structures. During the GITEWS project and the following maintenance phase, TsunAWI and a framework of pre- and postprocessing routines was developed step by step to provide fast computation of enhanced model physics and to deliver high quality results

    Current status of TsunAWI contributions to the Indonesia Tsunami Early Warning System (InaTEWS) with a comparison of warning products from near-realtime easyWave and precomputed TsunAWI simulations

    Get PDF
    Abstract: The Indonesia Tsunami Early Warning System delivers simulated tsunami forecasts in two different ways: either matching scenario(s) from a pre-computed database or running on-the-fly tsunami simulation. Recently, the database has been extended considerably taking into account additional source regions not covered in earlier stages of the system. In this contribution, we present the current status of the data base coverage as well as a study investigating the warning products obtained by the two modeling approaches. The pre-computed tsunami scenarios are based on the finite element model TsunAWI that employs a triangular mesh with resolution ranging from 20km in deep ocean to 300m in coastal areas and to as much as 50m in some highly resolved areas. TsunAWI solves the nonlinear shallow water equations and contains a wetting-drying inundation scheme. The on-the-fly propagation model easyWave solves the linear shallow water equations on a regular finite-difference grid with a resolution of about 1 km and utilizes several simple options to estimate coastal impact. This model is used for forecasting after a tsunami has been generated in an area not covered by the database or after a moment tensor solution shows an earthquake focal mechanism not present in the database. Since warning products like estimated wave height (EWH) and estimated time of arrival (ETA) along the coast are based on modeling results, it is crucial to compare the resulting forecasted warning levels obtained by the two approaches. Resolutions and numerical settings of both models are quite different, therefore variations in the resulting outputs are to be expected; nevertheless, the extent of differences in warning levels should not be too large for identical sources. In the present study, we systematically investigate differences in resulting warning products along InaTEWS forecast points facing the Sunda arc.  Whereas the finite-element mesh of TsunAWI covers the coast up to a terrain height of 50m and warning products have been pre-calculated directly in the forecast points, easyWave offers several options for their approximation including projections from offshore grid points or vertical wall. Differences and potential reasons for variations of warning products like the role of bathymetry resolution as well as the general approach for the assessment of EWH and ETA for different modeling frameworks are discussed

    FESOM_coastal

    Get PDF
    There is a growing need in the high quality estimations of long-term dynamics and circulation features in the coastal areas to answer major present and future societal, ecosystem and other questions, because of changing climate. On long time scales, the coastal dynamics change not only because of variable forcing, but also due to exchanges with the evolving global ocean. Over recent years, considerable efforts have been invested into developing regional models and applying them to the coastal areas. These models are used by different institutions to study currents, sediment transport and ecosystem dynamics. They are well-established tools equipped with necessary parameterizations and modules that may be required in shelf or coastal modeling. However, they are regional models with open boundaries. When it comes to applying them to study long-term trends and variability in the regional sea, they have to be coupled to a large-scale modeling system. However, numerical algorithms used by global models can be insufficient to simulate coastal dynamics. There are issues related to vertical advection and mixing, stability in case of very thin sigma layers, absence of wetting/drying option etc. One more point is the choice of time step in case of highly varying resolution. Coastal refinement can be added to the global models, but at the same time they will lose efficiency. Unstructured-mesh coastal models are too dissipative and expensive to simulate global circulation at present. A way out of this situation is coupling global and coastal models (one or two ways nesting). To reach this goal we present a coastal branch of the global model FESOM (Danilov et al. 2004, Wang et al. 2014). FESOM is a well-established large-scale ocean circulation model which is tested in numerous applications and participates in ocean model intercomparison project (see CORE-II virtual special issue of Ocean Modelling). It is the first model worldwide which provides multi-resolution functionality to large-scale ocean modeling, allowing one to bridge the gap between the scales and has the finite volume version at the current stage. FESOM_coastal treats the input/output characteristics in the same manner and share partly physical core with the global solution. It supports full coastal functionality, has cell-vortex finite volume discretization and works on any configurations of triangular, quadrangular or hybrid meshes

    Tsunami-Simulation für das indonesische Tsunami-Frühwarnsystem

    Get PDF
    Nach dem verheerenden Tsunami im Indischen Ozean 2004 wurde das internationale Kooperationsprojekt ''German-Indonesian Tsunami Early Warning System'' ins Leben gerufen und das Frühwarnzentrum am Amt für Meteorologie, Klimatologie und Geophysik in Jakarta aufgebaut. Auf deutscher Seite wurde das Projekt vom Helholtz-Zentrum Potsdam, Deutsches Geoforschungszentrum geleitet. Die Warnung nach einem starken Erdbeben basiert auf einer Datenbank möglicher Tsunamiszenarien, so dass schnell die Gefährdung der Küsten abgeschätzt werden kann. Im Vorfeld dienen detailiierte Überflutungsrechnungen als Basis für Evakuierungspläne. Der Vortrag stellt den Aufbau des Warnsystems mit einem Schwerpunkt auf der Rolle der Tsunami-Simulation vor. Insbesondere werden die physikalischen und numerischen Grundlagen des Simulationsmodells TsunAWI beleuchtet und am Beispiel einiger Modellrechnungen Möglichkeiten und Grenzen der Simulation aufgezeigt

    Non-linear aspects of the tidal dynamics in the Sylt-Rømø Bight, south-eastern North Sea

    Get PDF
    This study is dedicated to the tidal dynamics in the Sylt-Rømø Bight with a focus on the non-linear processes. The FESOM-C model was used as the numerical tool, which works with triangular, rectangular or mixed grids and is equipped with a wetting/drying option. As the model's success at resolving currents largely depends on the quality of the bathymetric data, we have created a new bathymetric map for an area based on recent studies of Lister Deep, Lister Ley, Højer Deep and Rømø Deep. This new bathymetric product made it feasible to work with high-resolution grids (up to 2 m in the wetting/drying zone). As a result, we were able to study the tidal energy transformation and the role of higher harmonics in the domain in detail. For the first time, the tidal ellipses, maximum tidally induced velocities, energy fluxes and residual circulation maps were constructed and analysed for the entire bight. Additionally, tidal asymmetry maps were introduced and constructed. The full analysis was performed on two grids with different structures and showed a convergence of the results as well as fulfilment of the energy balance. A great deal of attention has been paid to the selection of open-boundary conditions, model validation against tide gauges and recent in situ current data. The tidal residual circulation and asymmetric tidal cycles largely define the circulation pattern, transport and accumulation of sediment, and the distribution of bedforms in the bight; therefore, the results presented in the article are necessary and useful benchmarks for further studies in the area, including baroclinic and sediment dynamics investigations

    Evaluation and Application of Newly Designed Finite Volume Coastal Model FESOM-C, Effect of Variable Resolution in the Southeastern North Sea

    Get PDF
    A newly developed coastal model, FESOM-C, based on three-dimensional unstructured meshes and finite volume, is applied to simulate the dynamics of the southeastern North Sea. Variable horizontal resolution enables coarse meshes in the open sea with refined meshes in shallow areas including the Wadden Sea and estuaries to resolve important small-scale processes such as wetting and drying, sub-mesoscale eddies, and the dynamics of steep coastal fronts. Model results for a simulation of the period from January 2010 to December 2014 agree reasonably well with data from numerous regional autonomous observation stations with high temporal and spatial resolutions, as well as with data from FerryBoxes and glider expeditions. Analyzing numerical solution convergence on meshes of different horizontal resolutions allows us to identify areas where high mesh resolution (wetting and drying zones and shallow areas) and low mesh resolution (open boundary, open sea, and deep regions) are optimal for numerical simulations
    corecore